Affiliation:
1. Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544;,
Abstract
Large-scale regular vegetation patterns are common in nature, but their causes are disputed. Whereas recent theory focuses on scale-dependent feedbacks as a potentially universal mechanism, earlier studies suggest that many regular spatial patterns result from territorial interference competition between colonies of social-insect ecosystem engineers, leading to hexagonally overdispersed nest sites and associated vegetation. Evidence for this latter mechanism is scattered throughout decades of disparate literature and lacks a unified conceptual framework, fueling skepticism about its generality in debates over the origins of patterned landscapes. We review these mechanisms and debates, finding evidence that spotted and gapped vegetation patterns generated by ants, termites, and other subterranean animals are globally widespread, locally important for ecosystem functioning, and consistent with models of intraspecific territoriality. Because these and other mechanisms of regular-pattern formation are not mutually exclusive and can coexist and interact at different scales, the prevailing theoretical outlook on spatial self-organization in ecology must expand to incorporate the dynamic interplay of multiple processes.
Subject
Insect Science,Ecology, Evolution, Behavior and Systematics
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献