Contemporary Sea Level Rise

Author:

Cazenave Anny1,Llovel William1

Affiliation:

1. Laboratoire d'études en géophysique et océanographie spatiales LEGOS-CNES, Observatoire Midi-Pyrénées;,

Abstract

Measuring sea level change and understanding its causes has considerably improved in the recent years, essentially because new in situ and remote sensing observations have become available. Here we report on most recent results on contemporary sea level rise. We first present sea level observations from tide gauges over the twentieth century and from satellite altimetry since the early 1990s. We next discuss the most recent progress made in quantifying the processes causing sea level change on timescales ranging from years to decades, i.e., thermal expansion of the oceans, land ice mass loss, and land water–storage change. We show that for the 1993–2007 time span, the sum of climate-related contributions (2.85 ± 0.35 mm year−1) is only slightly less than altimetry-based sea level rise (3.3 ± 0.4 mm year−1): ∼30% of the observed rate of rise is due to ocean thermal expansion and ∼55% results from land ice melt. Recent acceleration in glacier melting and ice mass loss from the ice sheets increases the latter contribution up to 80% for the past five years. We also review the main causes of regional variability in sea level trends: The dominant contribution results from nonuniform changes in ocean thermal expansion.

Publisher

Annual Reviews

Subject

Oceanography

Cited by 438 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Eddy-driven sea-level rise near the frontal region off the east coast of the Korean peninsula during 1993–2020;Frontiers in Marine Science;2024-02-01

2. Role of environmental sustainability for climate change adaptations;Role of Green Chemistry in Ecosystem Restoration to Achieve Environmental Sustainability;2024

3. An Improved VMD–EEMD–LSTM Time Series Hybrid Prediction Model for Sea Surface Height Derived from Satellite Altimetry Data;Journal of Marine Science and Engineering;2023-12-18

4. The influence of climate change on mental health in populations of the western Pacific region: An umbrella scoping review;Heliyon;2023-11

5. Application of NDVI for marine algae monitoring: a Polish case study;2023 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea);2023-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3