Biomimetic Survival Hydrodynamics and Flow Sensing

Author:

Triantafyllou Michael S.1,Weymouth Gabriel D.2,Miao Jianmin3

Affiliation:

1. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;

2. Southampton Marine and Maritime Institute, University of Southampton, SO16 7QF Southampton, United Kingdom

3. School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798 Singapore

Abstract

The fluid mechanics employed by aquatic animals in their escape or attack maneuvers, what we call survival hydrodynamics, are fascinating because the recorded performance in animals is truly impressive. Such performance forces us to pose some basic questions on the underlying flow mechanisms that are not yet in use in engineered vehicles. A closely related issue is the ability of animals to sense the flow velocity and pressure field around them in order to detect and discriminate threats in environments where vision or other sensing is of limited or no use. We review work on animal flow sensing and actuation as a source of inspiration and as a way to formulate a number of basic problems and investigate the flow mechanisms that enable animals to perform these remarkable maneuvers. We also describe some intriguing mechanisms of actuation and sensing.

Publisher

Annual Reviews

Subject

Condensed Matter Physics

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3