Affiliation:
1. Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom;
Abstract
The presence of electric fields in immiscible multifluid flows induces Maxwell stresses at sharp interfaces that can produce electrohydrodynamic phenomena of practical importance. Electric fields can be stabilizing or destabilizing depending on their strength and orientation. In microfluidics, fields can be used to drive systems out of equilibrium to produce hierarchical patterning, mixing, and phase separation. We describe nonlinear theories of electrohydrodynamic instabilities in immiscible multilayer flows in several geometries, including flows over or inside planar or topographically structured substrates and channels and flows in cylinders and cylindrical annuli. Matched asymptotic techniques are developed for two- and three-dimensional flows, and reduced-dimension nonlinear models are derived and studied. When all regions are slender, electrostatic extensions to lubrication or shallow-wave theories are derived. In the presence of nonslender layers, nonlocal terms emerge naturally to modify the evolution equations. Analysis and computations provide a plethora of dynamics, including nonlinear traveling waves, spatiotemporal chaos, and singularity formation. Direct numerical simulations are used to evaluate the models and go beyond their range of validity to quantify phenomena such as electric field–induced directed patterning, suppression of Rayleigh–Taylor instabilities, and electrostatically induced pumping in microchannels. Comparisons of theory and simulations with available experiments are included throughout.
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献