Affiliation:
1. Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208, USA;
Abstract
The 1969 review by J.R. Melcher and G.I. Taylor defined the field of electrohydrodynamics. Fifty years on, the interaction of weakly conducting (leaky dielectric) fluids with electric fields continues to yield intriguing phenomena. The prototypical system of a drop in a uniform electric field has revealed remarkable dynamics in strong electric fields such as symmetry-breaking instabilities (e.g., Quincke rotation) and streaming from the drop equator. This review summarizes recent experimental and theoretical studies in the area of fluid particles (drop and vesicles) in electric fields, with a focus on the transient dynamics and extreme deformations. A theoretical framework to treat the time evolution of nearly spherical shapes is provided. The model has been successful in describing the dynamics of vesicles (closed lipid membranes) in an electric field, highlighting the broader range of applicability of the leaky dielectric approach.
Cited by
102 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献