Probabilistic Computations for Attention, Eye Movements, and Search

Author:

Eckstein Miguel P.1

Affiliation:

1. Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106-9660;

Abstract

The term visual attention immediately evokes the idea of limited resources, serial processing, or a zoom metaphor. But evidence has slowly accumulated that computations that take into account probabilistic relationships among visual forms and the target contribute to optimizing decisions in biological and artificial organisms, even without considering these limited-capacity processes in covert attention or even foveation. The benefits from such computations can be formalized within the framework of an ideal Bayesian observer and can be related to the classic theory of sensory cue combination in vision science and context-driven approaches to object detection in computer vision. The framework can account for a large range of behavioral findings across distinct experimental paradigms, including visual search, cueing, and scene context. I argue that these forms of probabilistic computations might be fundamental to optimizing decisions in many species and review human experiments trying to identify scene properties that serve as cues to guide eye movements and facilitate search. I conclude by discussing contributions of attention beyond probabilistic computations but argue that the framework's merit is to unify many basic paradigms to study attention under a single theory.

Publisher

Annual Reviews

Subject

Clinical Neurology,Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3