NanoSIMS Imaging and Analysis in Materials Science

Author:

Li Kexue1,Liu Junliang2,Grovenor Chris R.M.2,Moore Katie L.1

Affiliation:

1. Department of Materials, Photon Science Institute, The University of Manchester, Manchester M13 9PL, UK;

2. Department of Materials, University of Oxford, Oxford OX1 3PH, UK

Abstract

High-resolution SIMS analysis can be used to explore a wide range of problems in material science and engineering materials, especially when chemical imaging with good spatial resolution (50–100 nm) can be combined with efficient detection of light elements and precise separation of isotopes and isobaric species. Here, applications of the NanoSIMS instrument in the analysis of inorganic materials are reviewed, focusing on areas of current interest in the development of new materials and degradation mechanisms under service conditions. We have chosen examples illustrating NanoSIMS analysis of grain boundary segregation, chemical processes in cracking, and corrosion of nuclear components. An area where NanoSIMS analysis shows potential is in the localization of light elements, in particular, hydrogen and deuterium. Hydrogen embrittlement is a serious problem for industries where safety is critical, including aerospace, nuclear, and oil/gas, so it is imperative to know where in the microstructure hydrogen is located. By charging the metal with deuterium, to avoid uncertainty in the origin of the hydrogen, the microstructural features that can trap hydrogenic species, such as precipitates and grain and phase boundaries, can be determined by NanoSIMS analysis on a microstructurally relevant scale.

Publisher

Annual Reviews

Subject

Analytical Chemistry

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3