Affiliation:
1. Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA;
2. Department of Mechanical Engineering, Aydın Adnan Menderes University, Aydın 09010, Turkey;
Abstract
Acoustic microfluidic devices are powerful tools that use sound waves to manipulate micro- or nanoscale objects or fluids in analytical chemistry and biomedicine. Their simple device designs, biocompatible and contactless operation, and label-free nature are all characteristics that make acoustic microfluidic devices ideal platforms for fundamental research, diagnostics, and therapeutics. Herein, we summarize the physical principles underlying acoustic microfluidics and review their applications, with particular emphasis on the manipulation of macromolecules, cells, particles, model organisms, and fluidic flows. We also present future goals of this technology in analytical chemistry and biomedical research, as well as challenges and opportunities.
Cited by
206 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献