Affiliation:
1. INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France;
Abstract
Fluorescent proteins and developments in superresolution (nanoscopy) and single-molecule techniques bring high sensitivity, speed, and one order of magnitude gain in spatial resolution to live-cell imaging. These technologies have only recently been applied to prokaryotic cell biology, revealing the exquisite subcellular organization of bacterial cells. Here, we review the parallel evolution of fluorescence microscopy methods and their application to bacteria, mainly drawing examples from visualizing actin-like MreB proteins in the model bacterium Bacillus subtilis. We describe the basic principles of nanoscopy and conventional techniques and their advantages and limitations to help microbiologists choose the most suitable technique for their biological question. Looking ahead, multidimensional live-cell nanoscopy combined with computational image analysis tools, systems biology approaches, and mathematical modeling will provide movie-like, mechanistic, and quantitative description of molecular events in bacterial cells.
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献