Affiliation:
1. Groupe de Recherche sur le Système Nerveux Central (FRSQ), Department of Physiology, and Multidisciplinary Team in Locomotor Rehabilitation of the Canadian Institutes for Health Research, Université de Montréal, Montreal H3C 3J7, Canada;
2. Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke JIH 5N4, Canada
Abstract
After spinal cord injury (SCI), various sensorimotor functions can recover, ranging from simple spinal reflexes to more elaborate motor patterns, such as locomotion. Locomotor recovery after complete spinalization (complete SCI) must depend on the presence of spinal circuitry capable of generating the complex sequential activation of various leg muscles. This is achieved by an intrinsic spinal circuitry, termed the central pattern generator (CPG), working in conjunction with sensory feedback from the legs. After SCI, different changes in cellular and circuit properties occur spontaneously and can be promoted by pharmacological, electrical, or rehabilitation strategies. After partial SCI, hindlimb locomotor recovery can result from regeneration or sprouting of spared pathways, but also from mechanisms observed after complete SCI, namely changes within the intrinsic spinal circuitry and sensory inputs.
Cited by
257 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献