Olfactory Maps in the Brain

Author:

Murthy Venkatesh N.1

Affiliation:

1. Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138;

Abstract

The responses of neural elements in many sensory areas of the brain vary systematically with their physical position, leading to a topographic representation of the outside world. Sensory representation in the olfactory system has been harder to decipher, in part because it is difficult to find appropriate metrics to characterize odor space and to sample this space densely. Recent experiments have shown that the arrangement of glomeruli, the elementary units of processing, is relatively invariant across individuals in a species, yet it is flexible enough to accommodate new sensors that might be added. Evidence supports the existence of coarse spatial domains carved out on a genetic or functional basis, but a systematic organization of odor responses or neural circuits on a local scale is not evident. Experiments and theory that relate the properties of odorant receptors to the detailed wiring diagram of the downstream olfactory circuits and to behaviors they trigger may reveal the design principles that have emerged during evolution.

Publisher

Annual Reviews

Subject

General Neuroscience

Cited by 140 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cortical field maps across human sensory cortex;Frontiers in Computational Neuroscience;2023-12-15

2. Effects of stochastic coding on olfactory discrimination in flies and mice;PLOS Biology;2023-10-31

3. The Role of cAMP in Topographic Organization of the Olfactory System;Journal of Evolutionary Biochemistry and Physiology;2023-09

4. Biohybrid Technology for the Detection of Ultralow Concentrations of Trinitrotoluene in Air;Journal of Analytical Chemistry;2023-08

5. Nonequilibrium sensing of volatile compounds using active and passive analyte delivery;Proceedings of the National Academy of Sciences;2023-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3