Paths Less Traveled: Evo-Devo Approaches to Investigating Animal Morphological Evolution

Author:

Mallarino Ricardo1,Abzhanov Arhat1

Affiliation:

1. Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138;

Abstract

One of the chief aims of modern biology is to understand the causes and mechanisms of morphological evolution. Multicellular animals display a stunning diversity of shapes and sizes of their bodies and individual suborganismal structures, much of it important to their survival. What is the most efficient way to study the evolution of morphological diversity? The old-new field of evolutionary developmental biology (evo-devo) can be particularly useful for understanding the origins of animal forms, as it aims to consolidate advances from disparate fields such as phylogenetics, genomics, morphometrics, cell biology, and developmental biology. We analyze the structure of some of the most successful recent evo-devo studies, which we see as having three distinct but highly interdependent components: (a) morphometrics, (b) identification of candidate mechanisms, and (c) functional experiments. Our case studies illustrate how multifarious evo-devo approaches taken within the three-winged evo-devo research program explain developmental mechanisms for morphological evolution across different phylogenetic scales.

Publisher

Annual Reviews

Subject

Cell Biology,Developmental Biology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3