Developing and Implementing Predictive Models in a Learning Healthcare System: Traditional and Artificial Intelligence Approaches in the Veterans Health Administration

Author:

Atkins David1,Makridis Christos A.2,Alterovitz Gil2,Ramoni Rachel1,Clancy Carolyn3

Affiliation:

1. Office of Research and Development, Department of Veterans Affairs, Washington, DC, USA;

2. National Artificial Intelligence Institute, Department of Veterans Affairs, Washington, DC, USA

3. Office of Discovery, Education and Affiliate Networks, Department of Veterans Affairs, Washington, DC, USA

Abstract

Predicting clinical risk is an important part of healthcare and can inform decisions about treatments, preventive interventions, and provision of extra services. The field of predictive models has been revolutionized over the past two decades by electronic health record data; the ability to link such data with other demographic, socioeconomic, and geographic information; the availability of high-capacity computing; and new machine learning and artificial intelligence methods for extracting insights from complex datasets. These advances have produced a new generation of computerized predictive models, but debate continues about their development, reporting, validation, evaluation, and implementation. In this review we reflect on more than 10 years of experience at the Veterans Health Administration, the largest integrated healthcare system in the United States, in developing, testing, and implementing such models at scale. We report lessons from the implementation of national risk prediction models and suggest an agenda for research.

Publisher

Annual Reviews

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3