Affiliation:
1. Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut 06520, USA;
Abstract
Since the initial success of genome-wide association studies (GWAS) in 2005, tens of thousands of genetic variants have been identified for hundreds of human diseases and traits. In a GWAS, genotype information at up to millions of genetic markers is collected from up to hundreds of thousands of individuals, together with their phenotype information. Several scientific goals can be accomplished through the analysis of GWAS data, including the identification of variants, genes, and pathways associated with diseases and traits of interest; the inference of the genetic architecture of these traits; and the development of genetic risk prediction models. In this review, we provide an overview of the statistical challenges in achieving these goals and recent progress in statistical methodology to address these challenges.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献