Affiliation:
1. Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA;
2. Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
3. Department of Computer Science, Yale University, New Haven, Connecticut 06520, USA
Abstract
Biomedical data scientists study many types of networks, ranging from those formed by neurons to those created by molecular interactions. People often criticize these networks as uninterpretable diagrams termed hairballs; however, here we show that molecular biological networks can be interpreted in several straightforward ways. First, we can break down a network into smaller components, focusing on individual pathways and modules. Second, we can compute global statistics describing the network as a whole. Third, we can compare networks. These comparisons can be within the same context (e.g., between two gene regulatory networks) or cross-disciplinary (e.g., between regulatory networks and governmental hierarchies). The latter comparisons can transfer a formalism, such as that for Markov chains, from one context to another or relate our intuitions in a familiar setting (e.g., social networks) to the relatively unfamiliar molecular context. Finally, key aspects of molecular networks are dynamics and evolution, i.e., how they evolve over time and how genetic variants affect them. By studying the relationships between variants in networks, we can begin to interpret many common diseases, such as cancer and heart disease.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献