Penning-Trap Mass Measurements in Atomic and Nuclear Physics

Author:

Dilling Jens12,Blaum Klaus3,Brodeur Maxime4,Eliseev Sergey3

Affiliation:

1. TRIUMF, Vancouver, British Columbia V6T 2A3, Canada

2. Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada

3. Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany

4. Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA

Abstract

Penning-trap mass spectrometry in atomic and nuclear physics has become a well-established and reliable tool for the determination of atomic masses. In combination with short-lived radioactive nuclides it was first introduced at ISOLTRAP at the Isotope Mass Separator On-Line facility (ISOLDE) at CERN. Penning traps have found new applications in coupling to other production mechanisms, such as in-flight production and separation systems. The applications in atomic and nuclear physics range from nuclear structure studies and related precision tests of theoretical approaches to description of the strong interaction to tests of the electroweak Standard Model, quantum electrodynamics and neutrino physics, and applications in nuclear astrophysics. The success of Penning-trap mass spectrometry is due to its precision and accuracy, even for low ion intensities (i.e., low production yields), as well as its very fast measurement cycle, enabling access to short-lived isotopes. The current reach in relative mass precision goes beyond δ m/ m=10−8, the half-life limit is as low as a few milliseconds, and the sensitivity is on the order of one ion per minute in the trap. We provide a comprehensive overview of the techniques and applications of Penning-trap mass spectrometry in nuclear and atomic physics.

Publisher

Annual Reviews

Subject

Nuclear and High Energy Physics

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3