Affiliation:
1. Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392;
Abstract
Agrobacterium species genetically transform plants by transferring a region of plasmid DNA, T-DNA, into host plant cells. The bacteria also transfer several virulence effector proteins. T-DNA and virulence proteins presumably form T-complexes within the plant cell. Super-T-complexes likely also form by interaction of plant-encoded proteins with T-complexes. These protein-nucleic acid complexes traffic through the plant cytoplasm, enter the nucleus, and eventually deliver T-DNA to plant chromatin. Integration of T-DNA into the plant genome establishes a permanent transformation event, permitting stable expression of T-DNA-encoded transgenes. The transformation process is complex and requires participation of numerous plant proteins. This review discusses our current knowledge of plant proteins that contribute to Agrobacterium-mediated transformation, the roles these proteins play in the transformation process, and the modern technologies that have been employed to elucidate the cell biology of transformation.
Cited by
170 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献