DNA-Driven Assembly: From Polyhedral Nanoparticles to Proteins

Author:

Girard Martin1,Millan Jaime A.1,Olvera de la Cruz Monica1234

Affiliation:

1. Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208;

2. Department of Chemistry, Northwestern University, Evanston, Illinois 60208

3. Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208

4. Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208

Abstract

Directed crystallization of a large variety of nanoparticles, including proteins, via DNA hybridization kinetics has led to unique materials with a broad range of crystal symmetries. The nanoparticles are functionalized with DNA chains that link neighboring functionalized units. The shape of the nanoparticle, the DNA length, the sequence of the hybridizing DNA linker, and the grafting density determine the crystal symmetries and lattice spacing. By carefully selecting these parameters, one can, in principle, achieve all the symmetries found for both atomic and colloidal crystals of asymmetric shapes as well as new symmetries and can drive transitions between them. A scale-accurate coarse-grained model with explicit DNA chains provides the design parameters, including the degree of hybridization, to achieve specific crystal structures. The model also provides surface energy values to determine the shape of defect-free single crystals with macroscopic anisotropic properties, which has potential for the fabrication of materials with specific optical and mechanical properties.

Publisher

Annual Reviews

Subject

General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3