Advances in Density-Functional Calculations for Materials Modeling

Author:

Maurer Reinhard J.1,Freysoldt Christoph2,Reilly Anthony M.3,Brandenburg Jan Gerit45,Hofmann Oliver T.6,Björkman Torbjörn7,Lebègue Sébastien8,Tkatchenko Alexandre9

Affiliation:

1. Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom

2. Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany

3. School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland

4. Institute for Physical Chemistry, University of Göttingen, 37077 Göttingen, Germany

5. Current affiliation: Interdisciplinary Center for Scientific Computing, University of Heidelberg, 69120 Heidelberg, Germany

6. Institute of Solid State Physics, Graz University of Technology, NAWI Graz, 8010 Graz, Austria

7. Physics, Faculty of Science and Engineering, Åbo Akademi, FI-20500 Turku, Finland

8. Laboratoire de Physique et Chimie Théoriques, CNRS UMR 7019, Institut Jean Barriol, Université de Lorraine, BP 239, 54506 Vandoeuvre-lès-Nancy, France

9. Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg

Abstract

During the past two decades, density-functional (DF) theory has evolved from niche applications for simple solid-state materials to become a workhorse method for studying a wide range of phenomena in a variety of system classes throughout physics, chemistry, biology, and materials science. Here, we review the recent advances in DF calculations for materials modeling, giving a classification of modern DF-based methods when viewed from the materials modeling perspective. While progress has been very substantial, many challenges remain on the way to achieving consensus on a set of universally applicable DF-based methods for materials modeling. Hence, we focus on recent successes and remaining challenges in DF calculations for modeling hard solids, molecular and biological matter, low-dimensional materials, and hybrid organic-inorganic materials.

Publisher

Annual Reviews

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3