Size-Dependent Resistivity in Nanoscale Interconnects

Author:

Josell Daniel1,Brongersma Sywert H.2,Tőkei Zsolt3

Affiliation:

1. Metallurgy Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899;

2. IMEC, High Tech Campus 31, 5605 KN Eindhoven, The Netherlands;

3. IMEC, Kapeldreef 75, B-3001 Leuven, Belgium;

Abstract

As the dimensions of conductors shrink into the nanoscale, their electrical conductivity becomes dependent on their size even at room temperature. Although the behavior varies dramatically as temperatures increase from nanokelvins to hundreds of kelvins, the effect is generally to increase the resistivity above that of bulk material. As such, the underlying size-dependent phenomena have become increasingly important as advanced technologies have shifted their focus first from macro- to microscale and more recently from micro- to nanoscale dimensions. Indeed, the size-dependent increase of electrical resistivity that results from electron scattering on external and internal surfaces of copper conductors has already become technology limiting in modern microelectronics. This article summarizes the phenomena that underlie size effects, focusing on conduction in copper lines in particular. Attention is given to describing key innovations in both theoretical and experimental assessments that have significantly modified, facilitated, or advanced understanding.

Publisher

Annual Reviews

Subject

General Materials Science

Cited by 223 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3