Tailor-Made Additives for Melt-Grown Molecular Crystals: Why or Why Not?

Author:

Zhou Hengyu1,Sabino Julia1,Yang Yongfan1,Ward Michael D.1,Shtukenberg Alexander G.1,Kahr Bart1

Affiliation:

1. Department of Chemistry and the Molecular Design Institute, New York University, New York, NY, USA;, ,

Abstract

Tailor-made additives (TMAs) have found a role in crystal morphology engineering and control by specific binding to crystal surfaces through stereo-chemical recognition. The utility of TMAs, however, has been largely limited to crystal growth from solutions. In this review, we illustrate examples where TMAs have been used to influence the growth of crystals during cooling of their melts. In solution, the crystal growth driving force is governed by solute supersaturation, which corresponds to the deviation from equilibrium. In growth from melts, however, undercooling is the important thermodynamic parameter responsible for crystallization outcomes, a key difference that can influence the manner in which TMAs affect growth kinetics, crystal morphology, nucleation, enantioselective surface recognition, and the determination of the absolute sense of polar axes. When the crystallization driving force in a melt is small and diffusion is comparatively high, TMAs can exert their influence on well-faceted single crystals with the stereochemical richness observed in solution growth. Under high supercooling, where the driving force is large, ensembles of crystals can grow radially, masking stereochemical information and requiring new optical tools for understanding the influence of TMAs on emerging crystals.

Publisher

Annual Reviews

Subject

General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3