Affiliation:
1. Materials Theory Group, ETH Zürich, Zürich, Switzerland;,
Abstract
We review the class of materials known as polar metals, in which polarity and metallicity coexist in the same phase. While the notion of polar metals was first invoked more than 50 years ago, their practical realization has proved challenging since the itinerant carriers required for metallicity tend to screen any polarization. Huge progress has been made in the last decade, with many mechanisms for combining polarity and metallicity proposed and the first examples, LiOsO3 and WTe2, identified experimentally. The availability of polar metallic samples has opened a new paradigm in polar metal research, with implications in the fields of topology, ferroelectricity, magnetoelectricity, spintronics, and superconductivity. Here, we review the principles and techniques that have been developed to design and engineer polar metals and describe some of their interesting properties, with a focus on the most promising directions for future work.
Subject
General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献