Atomistic Simulations of Activated Processes in Materials

Author:

Henkelman G.1

Affiliation:

1. Department of Chemistry and the Institute for Computational and Engineering Sciences, University of Texas, Austin, Texas 78712;

Abstract

Activated processes in materials are important for many of the properties that make them function. Batteries and catalysts are examples for which understanding how the component materials function on a timescale of milliseconds to seconds is critical to making improvements in a rational way. Modeling materials over these long timescales, relative to the timescale of atomic vibrations, is one of the grand challenges of the field. Transition state theory is central to bridging this timescale gap, and in the materials community, the harmonic approximation and the determination of saddle points to quantify reaction rates are ubiquitous. In this review, single- and double-ended methods for saddle point finding are discussed, as well as how finding saddle points can be used in the adaptive kinetic Monte Carlo method to model materials properties on the timescale of activated processes. Applications of surface diffusion and chemistry, phase boundary migration, and solid-solid phase transitions are presented.

Publisher

Annual Reviews

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3