Cattle Production Systems: Ecology of Existing and Emerging Escherichia coli Types Related to Foodborne Illness

Author:

Smith David R.1

Affiliation:

1. Mississippi State University College of Veterinary Medicine, Mississippi State, Mississippi 39762-6100;

Abstract

Shiga toxin–producing Escherichia coli (STEC), particularly STEC O157, cause rare but potentially serious human infections. Infection with STEC occurs by fecal-oral transmission, most commonly through food. Cattle are the most important reservoir for human STEC exposure, and efforts to control the flow of STEC through beef processing have reduced rates of human illness. However, further reduction in human incidence of STEC may require control of the pathogen in cattle populations. The ecology of STEC in cattle production systems is complex and explained by factors that favor (a) colonization in the gut, (b) survival in the environment, and (c) ingestion by another cattle host. Although nature creates seasonal environmental conditions that do not favor STEC transmission in cattle, human efforts to control STEC by environmental manipulation have not succeeded. Vaccines and direct-fed microbial products have reduced the carriage of STEC by cattle, and other interventions are under investigation.

Publisher

Annual Reviews

Subject

General Veterinary,Genetics,Animal Science and Zoology,Biotechnology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3