Accelerating Improvement of Livestock with Genomic Selection

Author:

Meuwissen Theo1,Hayes Ben2,Goddard Mike3

Affiliation:

1. Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, Aas, Norway 1430;

2. Biosciences Research Division, Department of Primary Industries, Bundoora 3083, Australia;

3. Melbourne School of Land & Environment, University of Melbourne, Victoria 3010, Australia;

Abstract

Three recent breakthroughs have resulted in the current widespread use of DNA information: the genomic selection (GS) methodology, which is a form of marker-assisted selection on a genome-wide scale, and the discovery of large numbers of single-nucleotide markers and cost effective methods to genotype them. GS estimates the effect of thousands of DNA markers simultaneously. Nonlinear estimation methods yield higher accuracy, especially for traits with major genes. The marker effects are estimated in a genotyped and phenotyped training population and are used for the estimation of breeding values of selection candidates by combining their genotypes with the estimated marker effects. The benefits of GS are greatest when selection is for traits that are not themselves recorded on the selection candidates before they can be selected. In the future, genome sequence data may replace SNP genotypes as markers. This could increase GS accuracy because the causative mutations should be included in the data.

Publisher

Annual Reviews

Subject

General Veterinary,Genetics,Animal Science and Zoology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3