Fate-Regulating Circuits in Viruses: From Discovery to New Therapy Targets

Author:

Pai Anand1,Weinberger Leor S.12

Affiliation:

1. Gladstone Institute of Virology and Immunology, San Francisco, California 94158;

2. Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158

Abstract

Current antivirals effectively target diverse viruses at various stages of their life cycles. Nevertheless, curative therapy has remained elusive for important pathogens, such as human immunodeficiency virus type 1 (HIV-1) and herpesviruses, in large part due to viral latency and the evolution of resistance to existing therapies. Here, we review the discovery of viral master circuits: virus-encoded autoregulatory gene networks that autonomously control viral expression programs (i.e., between active, latent, and abortive fates). These circuits offer the opportunity for a new class of antivirals that could lead to intrinsic combination-antiviral therapies within a single molecule—evolutionary escape from such circuit-disrupting antivirals would require simultaneous evolution of both the viral cis regulatory element (e.g., the DNA-binding site) and the trans element (e.g., the transcription factor) in order for the virus to recapitulate a circuit that would not be disrupted. We review the architectures of these fate-regulating master circuits in HIV-1 and the human herpesvirus cytomegalovirus along with potential circuit-disruption strategies that may ultimately enable escape-resistant antiviral therapies.

Publisher

Annual Reviews

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3