Unanticipated Uses of the Global Positioning System

Author:

Larson Kristine M.1

Affiliation:

1. Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado 80309-0429, USA;

Abstract

Global Positioning System (GPS) instruments are routinely used today to measure crustal deformation signals from tectonic plate motions, faulting, and glacial isostatic adjustment. In parallel with the expansion of GPS networks around the world, several new and unexpected applications of GPS have been developed. For example, GPS instruments are now being used routinely to measure ground motions during large earthquakes. Access to real-time GPS data streams has led to the development of better hazard warnings for tsunamis, flash floods, earthquakes, and volcanic eruptions. Terrestrial water storage changes can be derived from GPS vertical coordinate time series. Finally, GPS signals that reflect on the surfaces below a GPS antenna can be used to measure soil moisture, snow accumulation, vegetation water content, and water levels. In the future, combining GPS with the signals from the Russian, European, and Chinese navigation constellations will significantly enhance these applications. ▪ GPS data are now routinely used to study the dynamics of earthquake rupture. ▪ GPS instruments are an integral part of warning systems for earth- quakes, tsunamis, flash floods, and volcanic eruptions. ▪ Reflected GPS signals provide a new source of soil moisture, snow depth, vegetation water content, and tide gauge data. ▪ GPS networks can sense changes in soil moisture, groundwater, and snow depth and thus can contribute to water resource assessments.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Astronomy and Astrophysics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Geodetic-Based Earthquake Early Warning System for Colombia and Ecuador;Seismological Research Letters;2024-08-09

2. Forward Looking Reflections on GNSS-R;The International Technical Meeting of the The Institute of Navigation;2024-02-14

3. Surface Reflectivity Variations of Global Navigation Satellite System Signals From a Mixed Ice and Water Surface;NAVIGATION: Journal of the Institute of Navigation;2024

4. Large-Scale Terrestrial Water Storage Changes Sensed by Geodesy;Springer Remote Sensing/Photogrammetry;2024

5. The Global Navigation Satellite System (GNSS): Positioning, Velocities, and Reflections;Springer Remote Sensing/Photogrammetry;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3