Spindle Assembly and Mitosis in Plants

Author:

Liu Bo1,Lee Yuh-Ru Julie1

Affiliation:

1. Department of Plant Biology, University of California, Davis, California, USA;,

Abstract

In contrast to well-studied fungal and animal cells, plant cells assemble bipolar spindles that exhibit a great deal of plasticity in the absence of structurally defined microtubule-organizing centers like the centrosome. While plants employ some evolutionarily conserved proteins to regulate spindle morphogenesis and remodeling, many essential spindle assembly factors found in vertebrates are either missing or not required for producing the plant bipolar microtubule array. Plants also produce proteins distantly related to their fungal and animal counterparts to regulate critical events such as the spindle assembly checkpoint. Plant spindle assembly initiates with microtubule nucleation on the nuclear envelope followed by bipolarization into the prophase spindle. After nuclear envelope breakdown, kinetochore fibers are assembled and unified into the spindle apparatus with convergent poles. Of note, compared to fungal and animal systems, relatively little is known about how plant cells remodel the spindle microtubule array during anaphase. Uncovering mitotic functions of novel proteins for spindle assembly in plants will illuminate both common and divergent mechanisms employed by different eukaryotic organisms to segregate genetic materials.

Publisher

Annual Reviews

Subject

Cell Biology,Plant Science,Molecular Biology,Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3