Diverse Stomatal Signaling and the Signal Integration Mechanism

Author:

Murata Yoshiyuki1,Mori Izumi C.2,Munemasa Shintaro1

Affiliation:

1. Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan;,

2. Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan;

Abstract

Guard cells perceive a variety of chemicals produced metabolically in response to abiotic and biotic stresses, integrate the signals into reactive oxygen species and calcium signatures, and convert these signatures into stomatal movements by regulating turgor pressure. Guard cell behaviors in response to such complex signals are critical for plant growth and sustenance in stressful, ever-changing environments. The key open question is how guard cells achieve the signal integration to optimize stomatal aperture. Abscisic acid is responsible for stomatal closure in plants in response to drought, and its signal transduction has been well studied. Other plant hormones and low-molecular-weight compounds function as inducers of stomatal closure and mediators of signaling in guard cells. In this review, we summarize recent advances in research on the diverse stomatal signaling pathways, with specific emphasis on signal integration and signal interaction in guard cell movement.

Publisher

Annual Reviews

Subject

Cell Biology,Plant Science,Molecular Biology,Physiology

Cited by 283 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3