Folate Biosynthesis, Turnover, and Transport in Plants

Author:

Hanson Andrew D.1,Gregory Jesse F.2

Affiliation:

1. Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611;

2. Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida 32611;,

Abstract

Folates are essential cofactors for one-carbon transfer reactions and are needed in the diets of humans and animals. Because plants are major sources of dietary folate, plant folate biochemistry has long been of interest but progressed slowly until the genome era. Since then, genome-enabled approaches have brought rapid advances: We now know (a) all the plant folate synthesis genes and some genes of folate turnover and transport, (b) certain mechanisms governing folate synthesis, and (c) the subcellular locations of folate synthesis enzymes and of folates themselves. Some of this knowledge has been applied, simply and successfully, to engineer folate-enriched food crops (i.e., biofortification). Much remains to be discovered about folates, however, particularly in relation to homeostasis, catabolism, membrane transport, and vacuolar storage. Understanding these processes, which will require both biochemical and -omics research, should lead to improved biofortification strategies based on transgenic or conventional approaches.

Publisher

Annual Reviews

Subject

Cell Biology,Plant Science,Molecular Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3