Titin Gene and Protein Functions in Passive and Active Muscle

Author:

Linke Wolfgang A.123

Affiliation:

1. Institute of Physiology II, University of Münster, 48149 Münster, Germany;

2. Deutsches Zentrum für Herz-Kreislaufforschung, Partner Site Göttingen, 37073 Göttingen, Germany

3. Cardiac Mechanotransduction Group, Clinic for Cardiology and Pneumology, University Medical Center, 37073 Göttingen, Germany

Abstract

The thin and thick filaments of muscle sarcomeres are interconnected by the giant protein titin, which is a scaffolding filament, signaling platform, and provider of passive tension and elasticity in myocytes. This review summarizes recent insight into the mechanisms behind how titin gene mutations cause hereditary cardiomyopathy and how titin protein is mechanically active in skeletal and cardiac myocytes. A main theme is the evolving role of titin as a modulator of contraction. Topics include strain-sensing via titin in the sarcomeric A-band as the basis for length-dependent activation, titin elastic recoil and refolding of titin domains as an energy source, and Ca2+-dependent stiffening of titin stretched during eccentric muscle contractions. Findings suggest that titin stiffness is a principal regulator of the contractile behavior of striated muscle. Physiological or pathological changes to titin stiffness therefore affect contractility. Taken together, titin emerges as a linker element between passive and active myocyte properties.

Publisher

Annual Reviews

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3