Lysosomal Acidification Mechanisms

Author:

Mindell Joseph A.1

Affiliation:

1. Membrane Transport Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892;

Abstract

Lysosomes, the terminal organelles on the endocytic pathway, digest macromolecules and make their components available to the cell as nutrients. Hydrolytic enzymes specific to a wide range of targets reside within the lysosome; these enzymes are activated by the highly acidic pH (between 4.5 and 5.0) in the organelles' interior. Lysosomes generate and maintain their pH gradients by using the activity of a proton-pumping V-type ATPase, which uses metabolic energy in the form of ATP to pump protons into the lysosome lumen. Because this activity separates electric charge and generates a transmembrane voltage, another ion must move to dissipate this voltage for net pumping to occur. This so-called counterion may be either a cation (moving out of the lysosome) or an anion (moving into the lysosome). Recent data support the involvement of ClC-7, a Cl/H+ antiporter, in this process, although many open questions remain as to this transporter's involvement. Although functional results also point to a cation transporter, its molecular identity remains uncertain. Both the V-ATPase and the counterion transporter are likely to be important players in the mechanisms determining the steady-state pH of the lysosome interior. Exciting new results suggest that lysosomal pH may be dynamically regulated in some cell types.

Publisher

Annual Reviews

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3