Affiliation:
1. Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
2. Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, California 92093-0815;
Abstract
The mammalian target of rapamycin (mTOR) is a central controller of cell growth and proliferation. mTOR forms two distinct complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTORC1 is regulated by multiple signals such as growth factors, amino acids, and cellular energy and regulates numerous essential cellular processes including translation, transcription, and autophagy. The AMP-activated protein kinase (AMPK) is a cellular energy sensor and signal transducer that is regulated by a wide array of metabolic stresses. These two pathways serve as a signaling nexus for regulating cellular metabolism, energy homeostasis, and cell growth, and dysregulation of each pathway may contribute to the development of metabolic disorders such as obesity, type 2 diabetes, and cancer. This review focuses on our current understanding of the relationship between AMPK and mTORC1 signaling and discusses their roles in cellular and organismal energy homeostasis.
Cited by
674 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献