Turning Off AKT: PHLPP as a Drug Target

Author:

Newton Alexandra C.1,Trotman Lloyd C.2

Affiliation:

1. Department of Pharmacology, University of California, San Diego, La Jolla, California 92093;

2. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724;

Abstract

Precise control of the balance between protein phosphorylation, catalyzed by protein kinases, and protein dephosphorylation, catalyzed by protein phosphatases, is essential for cellular homeostasis. Dysregulation of this balance leads to pathophysiological states, driving diseases such as cancer, heart disease, and diabetes. Aberrant phosphorylation of components of the pathways that control cell growth and cell survival are particularly prevalent in cancer. One of the most studied tumor suppressors in these pathways is the lipid phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome ten), which dephosphorylates the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate (PIP3), thus preventing activation of the oncogenic kinase AKT (v-akt murine thymoma viral oncogene homolog). In 2005, the discovery of a family of protein phosphatases whose members directly dephosphorylate and inactivate AKT introduced a new negative regulator of the phosphoinositide 3-kinase (PI3K) oncogenic pathway. Pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) isozymes comprise a novel tumor suppressor family whose two members, PHLPP1 and PHLPP2, are deleted as frequently as PTEN in cancers such as those of the prostate. PHLPP is thus a novel therapeutic target to suppress oncogenic pathways and is a potential candidate biomarker to stratify patients for the appropriate targeted therapeutics. This review discusses the role of PHLPP in terminating AKT signaling and how pharmacological intervention would impact this pathway.

Publisher

Annual Reviews

Subject

Pharmacology,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3