Affiliation:
1. Division of Medical Genetics, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030;
2. Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
Abstract
Thoracic aortic diseases, including aneurysms and dissections of the thoracic aorta, are a major cause of morbidity and mortality. Risk factors for thoracic aortic disease include increased hemodynamic forces on the ascending aorta, typically due to poorly controlled hypertension, and heritable genetic variants. The altered genes predisposing to thoracic aortic disease either disrupt smooth muscle cell (SMC) contraction or adherence to an impaired extracellular matrix, or decrease canonical transforming growth factor beta (TGF-β) signaling. Paradoxically, TGF-β hyperactivity has been postulated to be the primary driver for the disease. More recently, it has been proposed that the response of aortic SMCs to the hemodynamic load on a structurally defective aorta is the primary driver of thoracic aortic disease, and that TGF-β overactivity in diseased aortas is a secondary, unproductive response to restore tissue function. The engineering of mouse models of inherited aortopathies has identified potential therapeutic agents to prevent thoracic aortic disease.
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
97 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献