The Role of Diagenesis in Shaping the Geochemistry of the Marine Carbonate Record

Author:

Fantle Matthew S.1,Barnes B. Davis1,Lau Kimberly V.2

Affiliation:

1. Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;

2. Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming 82071, USA

Abstract

Carbonate sediments and rocks are valuable archives of Earth's past whose geochemical compositions inform our understanding of Earth's surface evolution. Yet carbonates are also reactive minerals and often undergo compositional alteration between the time of deposition and sampling and analysis. These changes may be mineralogical, structural, and/or chemical, and they are broadly referred to as diagenesis. Building on work over the past 40 years, we present an overview of key carbonate diagenesis terminology and a process-based framework for evaluating the geochemical impacts of carbonate diagenesis; we also highlight recent experimental and field observations that suggest metal isotopes as valuable diagenetic indicators. Our primary objectives are to demonstrate the value of coupling quantitative and analytical approaches, specifically with regard to metal isotopes and Mg/Ca, and to focus attention on key avenues for future work, including the role of authigenesis in impacting global geochemical cycles and the isotopic composition of the rock record. ▪  Quantitative frameworks utilizing well-understood diagenetic indicators and basic geochemical parameters allow us to assess the extent of diagenetic alteration in carbonate sediments. ▪  The reactivity, duration of reaction, and degree of isotopic or elemental/chemical disequilibrium determine the extent to which carbonates may be altered. ▪  Metal isotopic ratios (δ44Ca, δ26Mg, 87Sr/86Sr) can be used to constrain the extent and rate of carbonate recrystallization. ▪  Diagenetic signals may be globally synchronous, while diagenetic fluxes may impact global geochemical cycles.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3