Large Coseismic Slip to the Trench During the 2011 Tohoku-Oki Earthquake

Author:

Kodaira Shuichi1,Fujiwara Toshiya2,Fujie Gou1,Nakamura Yasuyuki1,Kanamatsu Toshiya2

Affiliation:

1. Research Institute for Marine Geodynamics, Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001, Japan;, ,

2. Research Institute for Marine Geodynamics, Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan;,

Abstract

The strong ground motions, large crustal deformation, and tsunami generated by the 2011 Tohoku-oki earthquake ( Mw 9.1) reveal that a large coseismic slip likely propagated to shallow depth in the Japan Trench. Although data acquired by onshore networks cannot resolve the slip behavior of the updip fault rupture, marine geophysical and geological studies provide direct evidence of coseismic slip to the trench. Differential bathymetry data show ∼50 m of coseismic seafloor displacement extending to the central Japan Trench (38–39.2°N). Seismic data show that coseismic slip ruptured the seafloor within the trench. Pelagic clays may have promoted slip propagation to shallow depths, whereas disturbed/metamorphosed clays may have restricted slip to the main rupture zone. Those observations imply that a smooth, broadly distributed, weak, clay-rich sediment in a shallow part of a subduction zone is a characteristic factor that can foster a large coseismic slip to the trench and, consequently, the generation of a large tsunami. ▪  During the 2011 Tohoku-oki earthquake ( Mw 9.1), more than ∼50 m of slip occurred on a fault that ruptured the seafloor in the central Japan Trench. ▪  The fault rupture reaching the seafloor caused a large tsunami. ▪  Marine geophysical explorations revealed that a clay-rich sediment in the subduction zone was one factor fostering the large fault slip. ▪  Understanding of slip behavior in the shallow portion of a subduction zone will help us prepare for future large tsunamis along the Japan-Kuril Trench.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Astronomy and Astrophysics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3