Carbon Lock-In: Types, Causes, and Policy Implications

Author:

Seto Karen C.1,Davis Steven J.2,Mitchell Ronald B.3,Stokes Eleanor C.1,Unruh Gregory4,Ürge-Vorsatz Diana5

Affiliation:

1. Yale School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06511;

2. Department of Earth System Science, University of California, Irvine, California 92697

3. Department of Political Science and Program in Environmental Studies, University of Oregon, Eugene, Oregon 97403

4. New Century College, George Mason University, Fairfax, Virginia 22030

5. Center for Climate Change and Sustainable Energy Policy, Central European University, 1051 Budapest, Hungary

Abstract

Existing technologies, institutions, and behavioral norms together act to constrain the rate and magnitude of carbon emissions reductions in the coming decades. The inertia of carbon emissions due to such mutually reinforcing physical, economic, and social constraints is referred to as carbon lock-in. Carbon lock-in is a special case of path dependency, which is common in the evolution of complex systems. However, carbon lock-in is particularly prone to entrenchment given the large capital costs, long infrastructure lifetimes, and interrelationships between the socioeconomic and technical systems involved. Further, the urgency of efforts to avoid dangerous climate change exacerbates the liability of even small lock-in risks. Although carbon lock-in has been recognized for years, efforts to characterize the types and causes of carbon lock-in, or to quantitatively assess and evaluate its policy implications, have been limited and scattered across a number of different disciplines. This systematic review of the literature synthesizes what is known about the types and causes of carbon lock-in, including the scale, magnitude, and longevity of the effects, and policy implications. We identify three main types of carbon lock-in and describe how they coevolve: (a) infrastructural and technological, (b) institutional, and (c) behavioral. Although each type of lock-in has its own set of processes, all three are tightly intertwined and contribute to the inertia of carbon emissions. We outline the conditions, opportunities, and strategies for fostering transitions toward less-carbon-intensive emissions trajectories. We conclude by proposing a carbon lock-in research agenda that can help bridge the gaps between science, knowledge, and policy-making.

Publisher

Annual Reviews

Subject

General Environmental Science

Cited by 699 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3