Engineering Microneedle Patches for Vaccination and Drug Delivery to Skin

Author:

Prausnitz Mark R.1

Affiliation:

1. School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100;

Abstract

Microneedle patches (MNPs) contain arrays of solid needles measuring hundreds of microns in length that deliver drugs and vaccines into skin in a painless, easy-to-use manner. Optimal MNP design balances multiple interdependent parameters that determine mechanical strength, skin-insertion reliability, drug delivery efficiency, painlessness, manufacturability, and other features of MNPs that affect their performance. MNPs can be made by adapting various microfabrication technologies for delivery of small-molecule drugs, biologics, and vaccines targeted to the skin, which can have pharmacokinetic and immunologic advantages. A small number of human clinical trials, as well as a large and growing market for MNP products for cosmetics, indicate that MNPs can be used safely, efficaciously, and with strong patient acceptance. More advanced clinical trials and commercial-scale manufacturing will facilitate development of MNPs to realize their potential to dramatically increase patient access to otherwise-injectable drugs and to improve drug performance via skin delivery.

Publisher

Annual Reviews

Subject

Renewable Energy, Sustainability and the Environment,General Chemical Engineering,General Chemistry

Cited by 306 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3