Mixed Semiconductor Alloys for Optical Devices

Author:

Kuech Thomas F.1,Mawst Luke J.2,Brown April S.3

Affiliation:

1. Department of Chemical and Biological Engineering and

2. Department of Electrical and Computer Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706;, ,

3. Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708

Abstract

There is an increasing technological need for a wider array of semiconducting materials that will allow greater control over the physical and electronic structure within multilayer heterostructures. This need has led to an expansion in the range of semiconducting alloys explored and used in new applications. These alloy semiconductors are often complicated by a limited range of miscibility. The current research has focused on the properties, stability, and detailed chemistry required to realize these materials. The use of synthetic conditions that permit the growth of these alloys to be dominated by kinetic rather than mass-transport considerations has allowed many of these nominally unstable materials to be grown and used in device structures. These materials have found important applications within optical communications as emitters and detectors and in solid-state lighting.

Publisher

Annual Reviews

Subject

Renewable Energy, Sustainability and the Environment,General Chemical Engineering,General Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3