Affiliation:
1. Single Cell Laboratory, Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., D-44227 Dortmund, Germany;
2. Laboratory of Chemical Biotechnology, Technische Universität Dortmund, D-44227 Dortmund, Germany
Abstract
Single-cell analysis (SCA) has been increasingly recognized as the key technology for the elucidation of cellular functions, which are not accessible from bulk measurements on the population level. Thus far, SCA has been achieved by miniaturization of established engineering concepts to match the dimensions of a single cell. However, SCA requires procedures beyond the classical approach of upstream processing, fermentation, and downstream processing because the biological system itself defines the technical demands. This review characterizes currently available microfluidics and microreactors for invasive (i.e., chemical) and noninvasive (i.e., biological) SCA. We describe the recent SCA omics approaches as tools for systems biology and discuss the role of SCA in genomics, transcriptomics, proteomics, metabolomics, and fluxomics. Furthermore, we discuss applications of SCA for biocatalysis and metabolic engineering as well as its potential for bioprocess optimization. Finally, we define present and future challenges for SCA and propose strategies to overcome current limitations.
Subject
Renewable Energy, Sustainability and the Environment,General Chemical Engineering,General Chemistry
Cited by
166 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献