Affiliation:
1. Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA;,
Abstract
Ammonia is a critically important industrial chemical and is largely responsible for sustaining the growing global population. To provide ammonia to underdeveloped regions and/or regions far from industrial production hubs, modular systems have been targeted and often involve unconventional production methodologies. These novel approaches for ammonia production can tap renewable resources at smaller scales located at the point of use, while decreasing the CO2 footprint. Plasma-assisted catalysis and electrochemical ammonia synthesis have promise owing to their atmospheric pressure and low-temperature operation conditions and the ability to construct units at scales desired for modularization. Fundamental and applied studies are underway to assess these processes, although many unknowns remain. In this review, we discuss recent developments and opportunities for unconventional ammonia synthesis with a focus on plasma-stimulated systems.
Subject
Renewable Energy, Sustainability and the Environment,General Chemical Engineering,General Chemistry
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献