Unconventional Catalytic Approaches to Ammonia Synthesis

Author:

Barboun Patrick M.1,Hicks Jason C.1

Affiliation:

1. Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA;,

Abstract

Ammonia is a critically important industrial chemical and is largely responsible for sustaining the growing global population. To provide ammonia to underdeveloped regions and/or regions far from industrial production hubs, modular systems have been targeted and often involve unconventional production methodologies. These novel approaches for ammonia production can tap renewable resources at smaller scales located at the point of use, while decreasing the CO2 footprint. Plasma-assisted catalysis and electrochemical ammonia synthesis have promise owing to their atmospheric pressure and low-temperature operation conditions and the ability to construct units at scales desired for modularization. Fundamental and applied studies are underway to assess these processes, although many unknowns remain. In this review, we discuss recent developments and opportunities for unconventional ammonia synthesis with a focus on plasma-stimulated systems.

Publisher

Annual Reviews

Subject

Renewable Energy, Sustainability and the Environment,General Chemical Engineering,General Chemistry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3