Computational Fluid Dynamics for Fixed Bed Reactor Design

Author:

Dixon Anthony G.1,Partopour Behnam1

Affiliation:

1. Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA;,

Abstract

Flow, heat, and mass transfer in fixed beds of catalyst particles are complex phenomena and, when combined with catalytic reactions, are multiscale in both time and space; therefore, advanced computational techniques are being applied to fixed bed modeling to an ever-greater extent. The fast-growing literature on the use of computational fluid dynamics (CFD) in fixed bed design reflects the rapid development of this subfield of reactor modeling. We identify recent trends and research directions in which successful methodology has been established, for example, in computer generation of packings of complex particles, and where more work is needed, for example, in the meshing of nonsphere packings and the simulation of industrial-size packed tubes. Development of fixed bed reactor models, by either using CFD directly or obtaining insight, closures, and parameters for engineering models from simulations, will increase confidence in using these methods for design along with, or instead of, expensive pilot-scale experiments.

Publisher

Annual Reviews

Subject

Renewable Energy, Sustainability and the Environment,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3