Modeling Food Particle Systems: A Review of Current Progress and Challenges

Author:

Fries Lennart1

Affiliation:

1. Nestlé Research Lausanne, Vers-Chez-les-Blanc, 1000 Lausanne 26, Switzerland;

Abstract

For many years, food engineers have attempted to describe physical phenomena such as heat and mass transfer in food via mathematical models. Still, the impact and benefits of computer-aided engineering are less established in food than in most other industries today. Complexity in the structure and composition of food matrices are largely responsible for this gap. During processing of food, its temperature, moisture, and structure can change continuously, along with its physical properties. We summarize the knowledge foundation, recent progress, and remaining limitations in modeling food particle systems in four relevant areas: flowability, size reduction, drying, and granulation and agglomeration. Our goal is to enable researchers in academia and industry dealing with food powders to identify approaches to address their challenges with adequate model systems or through structural and compositional simplifications. With advances in computer simulation capacity, detailed particle-scale models are now available for many applications. Here, we discuss aspects that require further attention, especially related to physics-based contact models for discrete-element models of food particle systems.

Publisher

Annual Reviews

Subject

Renewable Energy, Sustainability and the Environment,General Chemical Engineering,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3