Affiliation:
1. Ministry of Education Key Laboratory of Advanced Civil Engineering Material, School of Materials Science and Engineering, and Institute for Advanced Study, Tongji University, Shanghai 201804, China;
2. Department of Chemical and Biological Engineering and Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA;
Abstract
Responsive polymers undergo reversible or irreversible physical or chemical modifications in response to a change in environment or stimulus, e.g., temperature, pH, light, and magnetic or electric fields. Polymeric nanoparticles (NPs), which constitute a diverse set of morphologies, including micelles, vesicles, and core-shell geometries, have been successfully prepared from responsive polymers and have shown great promise in applications ranging from drug delivery to catalysis. In this review, we summarize pH, thermo-, photo-, and enzymatic responsiveness for a selection of polymers. We then discuss the formation of NPs made from responsive polymers. Finally, we highlight how NPs and other nanomaterials are enabling a wide range of smart applications with improved efficiency, as well as improved sustainability and recyclability of polymeric systems.
Subject
Renewable Energy, Sustainability and the Environment,General Chemical Engineering,General Chemistry
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献