Modeling Chemoresponsive Polymer Gels

Author:

Kuksenok Olga1,Deb Debabrata1,Dayal Pratyush12,Balazs Anna C.1

Affiliation:

1. Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261;

2. Present address: Department of Chemical Engineering, Indian Institute of Technology, Gandhinagar 382424, India

Abstract

Stimuli-responsive gels are vital components in the next generation of smart devices, which can sense and dynamically respond to changes in the local environment and thereby exhibit more autonomous functionality. We describe recently developed computational methods for simulating the properties of such stimuli-responsive gels in the presence of optical, chemical, and thermal gradients. Using these models, we determine how to harness light to drive shape changes and directed motion in spirobenzopyran-containing gels. Focusing on oscillating gels undergoing the Belousov-Zhabotinksy reaction, we demonstrate that these materials can spontaneously form self-rotating assemblies, or pinwheels. Finally, we model temperature-sensitive gels that encompass chemically reactive filaments to optimize the performance of this system as a homeostatic device for regulating temperature. These studies could facilitate the development of soft robots that autonomously interconvert chemical and mechanical energy and thus perform vital functions without the continuous need of external power sources.

Publisher

Annual Reviews

Subject

Renewable Energy, Sustainability and the Environment,General Chemical Engineering,General Chemistry

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3