Neogene History of the Amazonian Flora: A Perspective Based on Geological, Palynological, and Molecular Phylogenetic Data

Author:

Hoorn Carina1,Lohmann Lúcia G.23,Boschman Lydian M.4,Condamine Fabien L.5

Affiliation:

1. Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands;

2. Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil

3. University and Jepson Herbaria, and Department of Integrative Biology, University of California, Berkeley, California, USA

4. Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands

5. Institut des Sciences de l'Evolution de Montpellier, CNRS UMR 5554, Université de Montpellier, Montpellier, France

Abstract

The Amazon hosts one of the largest and richest rainforests in the world, but its origins remain debated. Growing evidence suggests that geodiversity and geological history played essential roles in shaping the Amazonian flora. Here we summarize the geo-climatic history of the Amazon and review paleopalynological records and time-calibrated phylogenies to evaluate the response of plants to environmental change. The Neogene fossil record suggests major sequential changes in plant composition and an overall decline in diversity. Phylogenies of eight Amazonian plant clades paint a mixed picture, with the diversification of most groups best explained by constant speciation rates through time, while others indicate clade-specific increases or decreases correlated with climatic cooling or increasing Andean elevation. Overall, the Amazon forest seems to represent a museum of diversity with a high potential for biological diversification through time. To fully understand how the Amazon got its modern biodiversity, further multidisciplinary studies conducted within a multimillion-year perspective are needed. ▪ The history of the Amazon rainforest goes back to the beginning of the Cenozoic (66 Ma) and was driven by climate and geological forces. ▪ In the early Neogene (23–13.8 Ma), a large wetland developed with episodic estuarine conditions and vegetation ranging from mangroves to terra firme forest. ▪ In the late Neogene (13.8–2.6 Ma), the Amazon changed into a fluvial landscape with a less diverse and more open forest, although the details of this transition remain to be resolved. ▪ These geo-climatic changes have left imprints on the modern Amazonian diversity that can be recovered with dated phylogenetic trees. ▪ Amazonian plant groups show distinct responses to environmental changes, suggesting that Amazonia is both a refuge and a cradle of biodiversity.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3