Clocks in Magmatic Rocks

Author:

Costa Fidel1

Affiliation:

1. Asian School of the Environment and Earth Observatory of Singapore, Nanyang Technological University, Singapore 639798;

Abstract

Understanding the evolution and processes that shape our planet critically depends on the robustness of the absolute ages and process durations obtained from rocks and crystals. Two main aspects of time information on magmatic systems are currently at the forefront of new knowledge. The capacity to determine process durations on human timescales makes it possible to relate the magma dynamics below active volcanoes with the monitoring signals measured at the surface, thereby improving eruption hazards mitigation. The combination of precise in situ dating of accessory minerals and diffusion chronometry is unraveling the incremental growth of large silica-rich magma reservoirs over thousands to hundreds of thousands of years and illuminates the complex relationships between plutonic and volcanic systems. Further progress could be made by decreasing the volume of the analyzed crystals and the error of time determinations, addressing the crystal representativeness and sampling bias, and connecting the time information with physicochemical models of magmatic systems. ▪  Rock-forming minerals are time capsules of magmatic processes that occur on human timescales and can help to better anticipate volcanic eruptions. ▪  In situ dating of accessory minerals reveals that large magma reservoirs evolve through multiple thermal fluctuations of over tens to hundreds of thousands of years. ▪  Progress on conceptual models of magma storage and rejuvenation requires improved error analysis of timescales and representativeness of crystal populations.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3