INSTABILITIES IN FLUIDIZED BEDS

Author:

Sundaresan Sankaran1

Affiliation:

1. Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544;

Abstract

▪ Abstract  This paper reviews recent advances in our understanding of the origin and hierarchy of organized flow structures in fluidized beds, distinction between bubbling and nonbubbling systems, and stages of bubble evolution. Experimental data and theory suggest that, at high particle concentrations, the particle-phase pressure arising from flow-induced velocity fluctuations decreases with increasing concentration of particles. This, in turn, implies that nonhydrodynamic stresses must be present to impart stability to a uniformly fluidized bed at very high particle concentrations. There is ample evidence to support an argument that, in commonly encountered gas-fluidized beds, yield stresses associated with enduring particle networks are present in the window of stable bed expansion, where the particles are essentially immobile until bubbling commences. However, some recent data on gas-fluidized beds of agglomerates of cohesive particles suggest that there exists a window of bed expansion where the bed does manifest a smooth appearance to the naked eye and the particles are mobile; at higher gas velocities the bed bubbles visibly. The mechanics of such beds remain to be fully explained.

Publisher

Annual Reviews

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3