Physical Conditions in Regions of Star Formation

Author:

Evans II Neal J.1

Affiliation:

1. Department of Astronomy, The University of Texas at Austin, Austin, Texas

Abstract

▪ Abstract  The physical conditions in molecular clouds control the nature and rate of star formation, with consequences for planet formation and galaxy evolution. The focus of this review is on the conditions that characterize regions of star formation in our Galaxy. A review of the tools and tracers for probing physical conditions includes summaries of generally applicable results. Further discussion distinguishes between the formation of low-mass stars in relative isolation and formation in a clustered environment. Evolutionary scenarios and theoretical predictions are more developed for isolated star formation, and observational tests are beginning to interact strongly with the theory. Observers have identified dense cores collapsing to form individual stars or binaries, and analysis of some of these cores support theoretical models of collapse. Stars of both low and high mass form in clustered environments, but massive stars form almost exclusively in clusters. The theoretical understanding of such regions is considerably less developed, but observations are providing the ground rules within which theory must operate. The richest and most massive star clusters form in massive, dense, turbulent cores, which provide models for star formation in other galaxies.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 512 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3